125 research outputs found

    Ori-Finder: A web-based system for finding oriCs in unannotated bacterial genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosomal replication is the central event in the bacterial cell cycle. Identification of replication origins (<it>oriC</it>s) is necessary for almost all newly sequenced bacterial genomes. Given the increasing pace of genome sequencing, the current available software for predicting <it>oriC</it>s, however, still leaves much to be desired. Therefore, the increasing availability of genome sequences calls for improved software to identify <it>oriC</it>s in newly sequenced and unannotated bacterial genomes.</p> <p>Results</p> <p>We have developed Ori-Finder, an online system for finding <it>oriC</it>s in bacterial genomes based on an integrated method comprising the analysis of base composition asymmetry using the <it>Z</it>-curve method, distribution of DnaA boxes, and the occurrence of genes frequently close to <it>oriC</it>s. The program can also deal with unannotated genome sequences by integrating the gene-finding program ZCURVE 1.02. Output of the predicted results is exported to an HTML report, which offers convenient views on the results in both graphical and tabular formats.</p> <p>Conclusion</p> <p>A web-based system to predict replication origins of bacterial genomes has been presented here. Based on this system, <it>oriC </it>regions have been predicted for the bacterial genomes available in GenBank currently. It is hoped that Ori-Finder will become a useful tool for the identification and analysis of <it>oriC</it>s in both bacterial and archaeal genomes.</p

    A method for the reconstruction of unknown non-monotonic growth functions in the chemostat

    Get PDF
    We propose an adaptive control law that allows one to identify unstable steady states of the open-loop system in the single-species chemostat model without the knowledge of the growth function. We then show how one can use this control law to trace out (reconstruct) the whole graph of the growth function. The process of tracing out the graph can be performed either continuously or step-wise. We present and compare both approaches. Even in the case of two species in competition, which is not directly accessible with our approach due to lack of controllability, feedback control improves identifiability of the non-dominant growth rate.Comment: expansion of ideas from proceedings paper (17 pages, 8 figures), proceedings paper is version v

    Atypical AT Skew in Firmicute Genomes Results from Selection and Not from Mutation

    Get PDF
    The second parity rule states that, if there is no bias in mutation or selection, then within each strand of DNA complementary bases are present at approximately equal frequencies. In bacteria, however, there is commonly an excess of G (over C) and, to a lesser extent, T (over A) in the replicatory leading strand. The low G+C Firmicutes, such as Staphylococcus aureus, are unusual in displaying an excess of A over T on the leading strand. As mutation has been established as a major force in the generation of such skews across various bacterial taxa, this anomaly has been assumed to reflect unusual mutation biases in Firmicute genomes. Here we show that this is not the case and that mutation bias does not explain the atypical AT skew seen in S. aureus. First, recently arisen intergenic SNPs predict the classical replication-derived equilibrium enrichment of T relative to A, contrary to what is observed. Second, sites predicted to be under weak purifying selection display only weak AT skew. Third, AT skew is primarily associated with largely non-synonymous first and second codon sites and is seen with respect to their sense direction, not which replicating strand they lie on. The atypical AT skew we show to be a consequence of the strong bias for genes to be co-oriented with the replicating fork, coupled with the selective avoidance of both stop codons and costly amino acids, which tend to have T-rich codons. That intergenic sequence has more A than T, while at mutational equilibrium a preponderance of T is expected, points to a possible further unresolved selective source of skew

    Conflict between Translation Initiation and Elongation in Vertebrate Mitochondrial Genomes

    Get PDF
    The strand-biased mutation spectrum in vertebrate mitochondrial genomes results in an AC-rich L-strand and a GT-rich H-strand. Because the L-strand is the sense strand of 12 protein-coding genes out of the 13, the third codon position is overall strongly AC-biased. The wobble site of the anticodon of the 22 mitochondrial tRNAs is either U or G to pair with the most abundant synonymous codon, with only one exception. The wobble site of Met-tRNA is C instead of U, forming the Watson-Crick match with AUG instead of AUA, the latter being much more frequent than the former. This has been attributed to a compromise between translation initiation and elongation; i.e., AUG is not only a methionine codon, but also an initiation codon, and an anticodon matching AUG will increase the initiation rate. However, such an anticodon would impose selection against the use of AUA codons because AUA needs to be wobble-translated. According to this translation conflict hypothesis, AUA should be used relatively less frequently compared to UUA in the UUR codon family. A comprehensive analysis of mitochondrial genomes from a variety of vertebrate species revealed a general deficiency of AUA codons relative to UUA codons. In contrast, urochordate mitochondrial genomes with two tRNA(Met) genes with CAU and UAU anticodons exhibit increased AUA codon usage. Furthermore, six bivalve mitochondrial genomes with both of their tRNA-Met genes with a CAU anticodon have reduced AUA usage relative to three other bivalve mitochondrial genomes with one of their two tRNA-Met genes having a CAU anticodon and the other having a UAU anticodon. We conclude that the translation conflict hypothesis is empirically supported, and our results highlight the fine details of selection in shaping molecular evolution

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Minimization of Biosynthetic Costs in Adaptive Gene Expression Responses of Yeast to Environmental Changes

    Get PDF
    Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses

    Amino Acid Metabolic Origin as an Evolutionary Influence on Protein Sequence in Yeast

    Get PDF
    The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor’s phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time

    Impact of Forest Seral Stage on use of Ant Communities for Rapid Assessment of Terrestrial Ecosystem Health

    Get PDF
    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests

    Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Get PDF
    Background:In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon.Results:Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family.Conclusions:Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution

    Does codon bias have an evolutionary origin?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a 3-fold redundancy in the Genetic Code; most amino acids are encoded by more than one codon. These synonymous codons are not used equally; there is a Codon Usage Bias (CUB). This article will provide novel information about the origin and evolution of this bias.</p> <p>Results</p> <p>Codon Usage Bias (CUB, defined here as deviation from equal usage of synonymous codons) was studied in 113 species. The average CUB was 29.3 ± 1.1% (S.E.M, n = 113) of the theoretical maximum and declined progressively with evolution and increasing genome complexity. A Pan-Genomic Codon Usage Frequency (CUF) Table was constructed to describe genome-wide relationships among codons. Significant correlations were found between the number of synonymous codons and (i) the frequency of the respective amino acids (ii) the size of CUB. Numerous, statistically highly significant, internal correlations were found among codons and the nucleic acids they comprise. These strong correlations made it possible to predict missing synonymous codons (wobble bases) reliably from the remaining codons or codon residues.</p> <p>Conclusion</p> <p>The results put the concept of "codon bias" into a novel perspective. The internal connectivity of codons indicates that all synonymous codons might be integrated parts of the Genetic Code with equal importance in maintaining its functional integrity.</p
    corecore